高周波数ノンコンタクトモードタッピングモード用.モノリシックシリコンAFMプローブです。反転ティップにより、高いサンプルに対しても対称性の良いイメージングを可能にします。また安定したサイズのティップ先端により、高分解能と高い繰り返し再現性をご提供します。
AFMホルダーチップはほとんどの市販AFMに取り付けられます。
液中での測定では、背面金コートのTap300GD-Gもしくは全面金コートのTap300GB-Gをご使用ください
高品質かつ低価格のプローブをお客様に!
この製品にはホルダーチップの背面にアライメント溝があります
Topography image of dried DNA
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Cypher AFM system, 5 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
The BudgetSensors logo imprinted by scratch lithography on a flame annealed polycarbonate surface with a BudgetSensors Tap300Al-G AFM probe and an Asylum MFP 3D AFM system
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum MFP 3D AFM system, 20 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Bismuth iron oxide (BFO) thin film on lanthanum aluminate (LAO)
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Cypher AFM system, 20 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Cypher AFM system, 4 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe and an Asylum MFP 3D AFM system, 2 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 10 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Compressed silicon nanoribbons on a flexible PDMS substrate
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum MFP-3D AFM system, 90 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
A superconducting quantum photon detecting device
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum MFP-3D AFM system, 25 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Mouse skeletal muscle fiber
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum MFP-3D AFM system, 20 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
A screw dislocation in a polymer surface
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum MFP-3D AFM system, 3 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
A crack in a nitride thin film
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Cypher AFM system, 2 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
A gypsum crystal etched with water
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Cypher AFM system, 3 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Carbon nanotubes and bundles on quartz atomic steps
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Cypher AFM system, 3 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Topography image of the wing of a moth. The nanostructure makes the wing highly hydrophobic and it's directional - water droplets will only flow away from the body off the ends of the wing, keeping the body dry.
スキャン BudgetSensors Tap300Al-G AFM probe on an Asylum Research MFP-3D AFM system, 20 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Single wall carbon nanotubes are transferred to an elastic PDMS substrate, then laterally compressed, causing the nanotubes to buckle into waves.
スキャン BudgetSensors Tap300Al-G AFM probe, 10 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Phase image of a SEBS block copolymer, topography rendered in 3D, overlaid with the color data from the phase image
スキャン BudgetSensors Tap300Al-G AFM probe, 4 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Thin film of Zein protein with cholesterol
スキャン BudgetSensors Tap300Al-G AFM probe, 15 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Atomic steps on a palladium surface
スキャン BudgetSensors Tap300Al-G AFM probe, 8 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
The curved surface of a human hair
スキャン BudgetSensors Tap300Al-G AFM probe, 35 micron scan tsize
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
The surface of an ant's abdominal plating
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Strontium titanium oxide (SrTiO3) surface with 4 Angstrom steps
スキャン BudgetSensors Tap300Al-G AFM probe, 2 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Hexagonal DNA nanostructure
スキャン BudgetSensors Tap300Al-G AFM probe, 600 nanometer scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Silicon surface impacted with molten copper droplet from the exhaust of a spacecraft ion thruster
スキャン BudgetSensors Tap300Al-G AFM probe, 25 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Crater in a sapphire substrate hit with a femtosecond laser pulse, followed by annealing to develop the step structure. The top surface is covered with single atomic steps (3Å).
スキャン BudgetSensors Tap300Al-G AFM probe, 20 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
An extremely thin (30 nm) free standing silicon nitride membrane with nickel nanoparticles, following heating with a short laser pulse. The nanoparticles react with the substrate, and the induced stress in the film creates large ripples in the membrane surface
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Magnesium oxide (MgO) crystal, carved in a Focused Ion Beam (FIB) system. The top, unaltered surface shows single and double atomic steps.
スキャン BudgetSensors Tap300Al-G AFM probe, 20 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Crystallization of poly(benzyl-beta-L-glutamate) on glass
スキャン BudgetSensors Tap300Al-G AFM probe, 30 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Contaminants on the surface prior to sputtering give rise to classic sputter cone formation.
スキャン BudgetSensors Tap300Al-G AFM probe, 1.5 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Sapphire crystal following annealing at 1400°C, leaving a clean surface with atomic steps and occasional defects. The steps are approximately 3Å tall.
スキャン BudgetSensors Tap300Al-G AFM probe, 12 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Chocolate is a complex material consisting primarily of a finely crystallized continuous fatty lipid matrix (cocoa butter) in which cocoa powder and sugar particles are dispersed. With time, the lipid crystals tend to merge to form larger crystals on a micron scale, significantly effecting the texture and taste of the chocolate. These images are of an aged commercial dark chocolate sample. The topography of the surface is rendered in 3D, while the coloring is an overlay of the phase image, which highlights the compositional differences (darker patches being the growing cocoa butter crystals).
スキャン BudgetSensors Tap300Al-G AFM probe, 15 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
E-coli bacterium with flagellum
スキャン BudgetSensors Tap300Al-G AFM probe, 6 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Highly Oriented Pyrolytic Graphite (HOPG) sample
スキャン BudgetSensors Tap300Al-G AFM probe, 1024 nanometer scan size
Image courtesy of Albert Lin, Angsnanotek Co., Ltd., Taiwan
Phase image of a styrene-ethylene-butylene-styrene (SEBS) triblock copolymer
スキャン BudgetSensors Tap300Al-G AFM probe, 3 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
The porous surface of anodized aluminum
スキャン BudgetSensors Tap300Al-G AFM probe, 3 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Zinc oxide nanoparticles (20~50nm)
スキャン BudgetSensors Tap300Al-G AFM probe, 2048, 1024, 512 and 256 nanometer scan size, respectively
Image courtesy of Albert Lin, Angsnanotek Co., Ltd., Taiwan
Amyloid fibrils (4~8nm)
スキャン BudgetSensors Tap300Al-G AFM probe, 1024 down to 256 nanometer scan size
Image courtesy of Albert Lin, Angsnanotek Co., Ltd., Taiwan
The blend of two biopolymers with compatibilizer
スキャン BudgetSensors Tap300Al-G AFM probe, 2 micron scan size
Image courtesy of Nagoya Municipal Industrial Research Institute Japan
Screw dislocation in poly-oxy-methylene (POM)
スキャン BudgetSensors Tap300Al-G AFM probe, 3 micron scan size
Image courtesy of Jeff Kalish, University of Illinois at Urbana-Champaign, USA
Topography (left) and 3D topography (right) images of nanoparticles
スキャン BudgetSensors Tap300Al-G AFM probe, 1024 nanometer scan size.
Image courtesy of Albert Lin Angsnanotek Co., Ltd., Taiwan
スキャン BudgetSensors Tap300Al-G AFM probe. 5000, 2000, 1024 and 512 nanometer scan size, respectively
Image courtesy of Albert Lin, Angsnanotek Co., Ltd., Taiwan
スキャン BudgetSensors Tap300Al-G AFM probe. 2500, 1000 and 500 nanometer scan size, respectively
Image courtesy of Albert Lin, Angsnanotek Co., Ltd., Taiwan
Imprints of different porphyrin aggregates in polystyrene
スキャン BudgetSensors Tap300Al-G AFM probe, 5 micron scan size
Image courtesy of Walter Smith, Haverford College, Haverford, USA
ZnO particles (<10nm)
スキャン BudgetSensors Tap300Al-G AFM probe, 1024, 512, 256 and 256 nanometer scan sizes, respectively
Image courtesy of Albert Lin, Angsnanotek Co., Ltd., Taiwan
Finely detailed surface of biaxially-oriented polypropylene (BOPP)
スキャン BudgetSensors Tap300Al-G AFM probe, 3 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Dendritic growth of platinum nanoclusters
スキャン BudgetSensors Tap300Al-G AFM probe, 7 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM Probe, 2 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Carbon nanotubes and bundles emerging from line of catalyst particles
スキャン BudgetSensors Tap300Al-G AFM probe, 5 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Fast dried white glue.
スキャン BudgetSensors Tap300Al-G AFM probe, amplitude image, 10 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 10 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Dendritic growth of HDI polymer
スキャン BudgetSensors Tap300Al-G AFM probe, 20 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 3 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Polystyrene foam surface
スキャン BudgetSensors Tap300Al-G AFM probe, 30 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Sesame seed surface
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Ruptured gold palladium thin film
スキャン BudgetSensors Tap300Al-G AFM probe, 5 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Two dimensional plastic optical grating
スキャン BudgetSensors Tap300Al-G AFM probe, 30 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Water etched gypsum crystal
スキャン BudgetSensors Tap300Al-G AFM probe, 1 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
A scan of synthetic opal
スキャン BudgetSensors Tap300Al-G AFM probe, 9 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 30 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Polymer blend of polystyrene and polycaprolactone
スキャン BudgetSensors Tap300Al-G AFM probe, 10 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 12 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 80 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 70 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
スキャン BudgetSensors Tap300Al-G AFM probe, 20 micron scan
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
The TipCheck is BudgetSensors AFM probe tip evaluation sample. The sharp pyramidal structures allow reverse imaging of the tip apex.
スキャン BudgetSensors Tap300Al-G AFM probe, 1 micron scan size
Image courtesy of Dr. Yordan Stefanov, Innovative Solutions Bulgaria
Topography image of the central area of BudgetSensors height calibration standard HS-100MG with 100 nm nominal step height. The HS-100MG can also be used for X-Y calibration of large area scanners. The array design makes it possible to calibrate your AFM system without the need to rotate and realign the sample in-between X and Y axis calibration.
スキャン BudgetSensors Tap300Al-G AFM probe, 25 micron scan size
Image courtesy of Dr. Yordan Stefanov, Innovative Solutions Bulgaria
For accurate imaging of small features the AFM tip radius of curvature must be much smaller than the typical feature size. If, on the contrary, the tip is much larger than the features, the result of the measurement is an image of the tip itself! On the left is a tapping mode scan with a brand new sharp probe that reveals nicely the pyramidal structures on our TipCheck. On the right is a scan of the same TipCheck using a damaged tip. One can see clearly the triangular crosssection of the tip pyramid broken-off by improper probe handling.
スキャン BudgetSensors Tap300Al-G AFM probe, 1 micron scan size
Image courtesy of Dr. Yordan Stefanov, Innovative Solutions Bulgaria
Did you know that collagen is the most abundant protein in our bodies making up around 30% of total protein content?
スキャン BudgetSensors Tap300Al-G AFM probe, 40 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Precious opals are composed of closely packed silica spheres with sizes of several hundred nanometers. The beautiful colors of opals are caused by light diffraction and interference. This 90 micron AFM scan shows an opal surface with two transitions between neighboring planes of nanospheres.
スキャン BudgetSensors Tap300Al-G AFM probe, 90 micron scan size
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA
Large scale structure of a desiccated compound butterfly eye (left) and fine nanostructure completely covering the facets (right)
スキャン BudgetSensors Tap300Al-G AFM probe, 90 and 4 micron scan size, respectively
Image courtesy of Scott MacLaren, University of Illinois at Urbana-Champaign, USA