最新情報

NanoWorld Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis - news

Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosisFri Aug 30 2024

#Cells communicate with their environments via the #plasma #membrane and various #membrane #proteins. Clathrin-mediated endocytosis (CME) plays a central role in such communication and proceeds with a series of multiprotein assembly, deformation of the #plasmamembrane, and production of a membrane #vesicle that delivers extracellular signaling molecules into the cytoplasm.*
In the article “Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis”, Aiko Yoshida, Nobuaki Sakai, Yoshitsugu Uekusa, Yuka Imaoka, Yoshitsuna Itagaki, Yuki Suzuki and Shige H. Yoshimura describe how they utilized their home-built correlative imaging system comprising #highspeedatomicforcemicroscopy ( #HSAFM) and confocal #fluorescencemicroscopy to simultaneously image morphological changes of the plasma membrane and protein localization during CME in a #livingcell.*
Overlaying #AFM and fluorescence images revealed the dynamics of protein assembly and concomitant morphological changes of the plasma membrane with high spatial resolution. In particular, the authors elucidate the role of actin in the closing step of CME.*
The results revealed a tight correlation between the size of the pit and the amount of #clathrin assembled. #Actin dynamics play multiple roles in the assembly, maturation, and closing phases of the process, and affects membrane morphology, suggesting a close relationship between endocytosis and dynamic events at the cell cortex. Knock down of dynamin also affected the closing motion of the pit and showed functional correlation with actin.*
An AFM tip-scan–type HS-AFM unit combined with an inverted fluorescence/optical microscope equipped with a phase contrast system and a confocal unit was used for this study.*
The modulation method was set to phase modulation mode to detect AFM tip–sample interactions. A customized NanoWorld Ultra-Short #AFMcantilever with an electron beam–deposited sharp #AFMtip with a spring constant of 0.1 N m−1 (USC-F0.8-k0.1-T12) was used. *

nanotools Structural Protein Changes Captured at High Temporal and Spatial Resolutions - news

Structural Protein Changes Captured at High Temporal and Spatial ResolutionsFri Aug 30 2024

Discover how nanotools QUANTUM-AC10 (Soft & Sharp) with 0.1N/m cantilevers and 2-3nm radius are applied to study dynamic structural changes of proteins during functional processes in solution.

  • Title: Deciphering the actin structure-dependent preferential cooperative binding of cofilin
  • DOI: 10.1101/2023.12.06.570358
  • Authors: Ngo, Kien Xuan and Vu, Huong T and Umeda, Kenichi and Trinh, Minh-Nhat and Kodera, Noriyuki and Uyeda, Taro Q.P.
  • Publication: bioRxiv
  • Pubisher: Cold Spring Harbor Laboratory
  • Date: May 29, 2024

NanoAndMore Stop by NanoAndMore USA booth 1407 at the ACSFALL2024

Stop by NanoAndMore USA booth 1407 at the ACSFALL2024Tue Aug 20 2024

Good Day Denver! #ACSFALL2024 has begun! What’s NEW in the #AFMProbe nanoverse? Stop by @NanoAndMore USA booth 1407 and see!
August 18-21, Colorado Convention Center
Denver, CO
Expo Hours:
Monday & Tuesday
11AM - 5PM
Wednesday
10AM - 2PM
Exclusive hours for Posters and Expo Networking Break.

NANOSENSORS Quantifying mechanical forces during vertebrate morphogenesis - news

Quantifying mechanical forces during vertebrate morphogenesisThu Aug 15 2024

#Morphogenesis requires #embryoniccells to generate forces and perform mechanical work to shape their #tissues. Incorrect functioning of these #forcefields can lead to congenital malformations.*
Understanding these #dynamicprocesses requires the quantification and profiling of three-dimensional mechanics during evolving #vertebratemorphogenesis.*
In the article “Quantifying mechanical forces during vertebrate morphogenesis” Eirini Maniou, Silvia Todros, Anna Urciuolo, Dale A. Moulding, Michael Magnussen, Ioakeim Ampartzidis, Luca Brandolino, Pietro Bellet, Monica Giomo, Piero G. Pavan, Gabriel L. Galea and Nicola Elvassore describe elastic spring-like #forcesensors with micrometre-level resolution, fabricated by intravital three-dimensional #bioprinting directly in the closing #neuraltubes of growing chicken #embryos.*
Integration of calibrated sensor read-outs with computational mechanical modelling allows direct quantification of the forces and work performed by the #embryonictissues. As they displace towards the embryonic midline, the two halves of the closing neural tube reach a compression of over a hundred nano-newtons during neural fold apposition. Pharmacological inhibition of Rho-associated kinase to decrease the pro-closure force shows the existence of active anti-closure forces, which progressively widen the neural tube and must be overcome to achieve neural tube closure. *
Overall, the author’s approach and findings highlight the intricate interplay between #mechanicalforces and #tissuemorphogenesis.*
The #atomicforcemicroscopy ( #AFM) described in the article was conducted using a commercially available #atomicforcemicroscope.*
The #forcedisplacementcurves were acquired using @NANOSENSORS @PointProbePlus PPP-CONTSCR silicon #AFMprobes with a typical spring constant of 0.2 N/m. *
The #AFMcantilever #springconstants were calibrated by the manufacturer prior to use. The sensitivity of each AFM cantilever was adjusted by measuring the slope of the #forcedistancecurve acquired on a hard reference material prior to each experiment. *
#Indentation experiments were repeated at least three times for each sample, at different locations. All AFM measurements were done in a fluid environment (PBS) at room temperature.*
The #Youngsmodulus was calculated by applying a fit of the Hertz model to the force–distance curve, assuming a Poisson ratio of 0.5, as is common practice for PEG #hydrogels. Preliminary in silico analyses of the #AFMtesting procedure were carried out to evaluate the effects of boundary conditions on the estimation of Young’s modulus.*
You will find the full citation and a direct link to the full article in the NANOSENSORS blog:
#forcespectroscopy #scanningprobemicroscopy #polymers #biology #生物学 #AFM探针 #原子力显微镜探针 #力距离曲线

NanoWorld Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer - news

Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymerFri Aug 09 2024

Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer
Flux-closure structures, vortices/antivortices, skyrmions, and merons in oxides, metals and polymers represent non-trivial topologies in which a local polar/magnetic order undergoes quasi-continuous spatial variations in a host crystal lattice. These structures are now extensively studied due to emergent functionalities, but the application of electrical/mechanical fields has so far only served to destroy the polar topologies of interest. * Topology created by quasi-continuous spatial variations of a local polarization direction represents an exotic state of matter, but field-driven manipulation has been hitherto limited to creation and destruction. *In the article “Electrically and mechanically driven rotation of polar spirals in a relaxor […]

NanoAndMore NanoAndMore booth for the #NCAFM2024 is all packed up and ready to travel home

Our booth for the #NCAFM2024 is all packed up and ready to travel home.Fri Aug 09 2024

Before we leave, we would like to say a big thank you to all of you who have visited our booth during the last few days.
And last but not least we would like to thank the local organizing committee at McGill University : Peter Grütter, Catherine Boisver, Louise Decelles, Chloé Paquet and Omur Dagdeviren (École de Technologie Supérieure) for a great conference.
We hope to see you all again soon!

NanoAndMore Meet us at the 25th International Conference on Non-contact Atomic Force Microscopy

Meet us at the 25th International Conference on Non-contact Atomic Force MicroscopyMon Aug 05 2024

Meet us @NanoAndMore #AFMprobes booth at the 25th International Conference on #NonContactAtomicForceMicroscopy from August 5th - August 9th at McGill University in Montreal this week. https://nc-afm2024.physics.mcgill.ca/
The conference covers the experimental, theoretical and instrumental developments in #frequencymodulation and other dynamic operation modes with particular emphasis on aspects of #highresolutionimaging and #forcespectroscopy.
We're hoping to see you soon!

NANOSENSORS Happy Birthday Switzerland! - news

Happy Birthday Switzerland!Wed Jul 31 2024

We are celebrating tomorrow’s #SwissNationalHoliday courtesy of Basel University ( @NanolinoBasel ) with the smallest #SwissCross – made of 20 single atoms.
Enjoy the holiday everyone in #Switzerland!
( a NANOSENSORS PointProbePlus PPP-NCL #AFMprobe was used for this image achieved with #atomicforcemicroscopy https://www.nanosensors.com/pointprobe-plus-non-contact… ).

NANOSENSORS The interface between ice and alcohols analyzed by atomic force microscopy - news

The interface between ice and alcohols analyzed by atomic force microscopyMon Jul 29 2024

#Ice plays a crucial role in our environment, with natural ice formations, such as glaciers, permafrost, river ice, and snow, strongly influencing the temperature, humidity, and weather patterns on Earth.*
Because of its importance in our lives, extensive experimental and theoretical studies have been conducted to understand the characteristic properties of ice.*
An in-depth analysis of the interface between ice and water is essential for a complete understanding of ice near-natural conditions.*
In the article “The interface between ice and alcohols analyzed by atomic force microscopy” Ryo Yanagisawa, Tadashi Ueda, Keiichi Nakamoto , Zhengxi Lu, Hiroshi Onishi and Taketoshi Minato investigate the interface between ice and organic solvents using #atomicforcemicroscopy ( #AFM).*
Atomically flat ice surfaces were prepared and observed by AFM in 1-octanol, 1-hexanol, and 1-butanol.
The results show differences in #surfaceroughness influenced by the interaction of ice and alcohols.
The #Young’smodulus of ice was analyzed by #forcecurvemeasurements, providing valuable insights into the properties of ice in liquid environments.
The atomic force microscopy (AFM) measurements were conducted with a commercially available AFM that was placed in an acoustic enclosure and was cooled with the vapor of liquid nitrogen and a copper tube cooled with antifreezing fluid to maintain the environmental temperature at 264.7–270.2 K.
#Topographicimages were obtained in the #amplitudemodulationmode with NANOSENSORS PointProbe® Plus PPP-NCHAuD #AFMprobes with gold coating on the detector side of the #AFMcantilever.
The spring constant of each lever was calibrated from the Brownian motion of the AFM cantilever. To analyze Young’s modulus from the #forcecurve, the deflection sensitivity and #AFMtip radius were calibrated using Young’s modulus of mica (70 GPa).
To confirm the reproducibility of the atomic force microscopy results, the measurements were performed on 6–32 points (the distance between the points was more than 100 µm) from 3–16 ices under each condition.
Although the interface between alcohols and ice is different from that between water and ice, Ryo Yanagisawa et al. expect that careful selection of suitable organic solvents will lead to new insights that mimic essential features of the ice–water interface.*
Ryo Yanagisawa et al. they observed the surface structure of ice in liquid environments and demonstrated the analysis of physical properties, such as Young’s modulus, through force curve measurements in these liquid systems.
The results showed the characteristics of the ice surface in different solvents, suggesting potential applications in understanding surface and interface phenomena associated with ice under realistic conditions.*

nanotools Improving Current and External Quantum Efficiency of Perovskite LEDs - news

Improving Current and External Quantum Efficiency of Perovskite LEDsWed Jul 24 2024

Discover how nanotools conical SSS-NCHR with 2 nm radius are applied to study the topography of CsPbBr3 nanocrystals treated with hydrazine monohydrobromide.

  • Title: Overcoming charge transfer barriers via electrostatically stabilized CsPbBr3 nanocrystals for efficient perovskite light-emitting diodes
  • DOI: 10.1016/j.cej.2023.142120
  • Authors: Min-Gi Jeon, Artavazd Kirakosyan, ChaeHo Shin, Subin Yun, Joonseok Kim, Li Li, Jihoon Choi
  • Publication: Chemical Engineering Journal
  • Publisher: Elsevier
  • Date: 15 April 2023

BudgetSensors el2c01331_0001.jpg

Dielectric Properties of Polymer Nanocomposite Interphases Using Electrostatic Force Microscopy and Machine LearningMon Jul 22 2024

Metrology for measuring the interfacial dielectric permittivity in dielectrics with Electrostatic Force Microscopy (EFM) measurements and machine learning. AFM measurements performed using our platinum coated ElectriMulti75-G AFM probes.

NanoWorld Interfacial water on collagen nanoribbons by 3D AFM - news

Interfacial water on collagen nanoribbons by 3D AFMMon Jul 22 2024

Interfacial water on collagen nanoribbons by 3D AFM
Collagen is the most abundant structural protein in mammals. * Type I collagen in its fibril form has a characteristic pattern structure that alternates two regions called gap and overlap. The structure and properties of collagens are highly dependent on the water and mineral content of the environment. * In the article “Interfacial water on collagen nanoribbons by 3D AFM” Diana M. Arvelo, Clara Garcia-Sacristan, Enrique Chacón, Pedro Tarazona and Ricardo Garcia describe how they apply three dimensional atomic force microscopy (3D AFM) to characterize at angstrom-scale resolution the interfacial water structure of collagen nanoribbons.* Three-dimensional AFM (3D AFM) is […]

NANOSENSORS Magnetic control of self-assembly and disassembly in organic materials - news

Magnetic control of self-assembly and disassembly in organic materialsWed Jul 10 2024

#Magneticallyresponsivematerials are highly valuable for biological and medical uses because the magnetic field is non-invasive, radiation-free, and safe for humans.*
DNA and some proteins have also been shown to be magnetically responsive; however, with very few exceptions, an extremely strong magnetic field is typically required to influence the behaviours of such #biomolecules.*
As organic molecules and materials are generally insensitive or weakly sensitive to magnetic fields, it is necessary to find ways and means to increase their #magneticresponsiveness. *
Because #magneticsusceptibility is additive, one possible way of increasing magnetic responsiveness is to place multiple magnetically responsive moieties within a single molecule in a favourable orientation.
The hashtag#αhelix, one of the most common secondary structures of #proteins, provides a nice example of constructive addition in diamagnetism.
In the article “Magnetic control of self-assembly and disassembly in organic materials” You-jin Jung, Hyoseok Kim, Hae-Kap Cheong and Yong-beom Lim show that the magnetic control of assembly and disassembly under the ordinary magnetic field strength is possible by synergistically combining the concepts of the perfect α-helix and the #rodcoil #supramolecularbuildingblocks.*
You-jin Jung et al. experimentally verify the magnetic responsiveness both in solution state and in thin films containing equilibrium morphologies.*
To make this possible, the key prerequisite was the development of the α-helical peptide, which has multiple characteristics simultaneously.*
The authors show that the #selfassembly processes of the designed rod-coils and #disassembly of rod-coil/DNA complexes can be controlled in a magnetically responsive manner using the relatively weak magnetic field provided by the ordinary neodymium magnet [0.07 ~ 0.25 Tesla (T)].*
These results demonstrate that magnetically responsive #organicassemblies usable under practical conditions can be realized by using rod-coil supramolecular building blocks containing constructively organized diamagnetic moieties.*
This study lays foundation to magnetically interface organic materials with magnetic devices and instruments, with application potentials in magnetically responsive #bionanomaterials, molecular magnetic devices, and smart peptide/nucleic acid complexes highly responsive to magnetic field.*
The morphological states were characterized by #atomicforcemicroscopy (AFM) and transmission electron microscopy (TEM).
#AFM was performed with a commercially available #atomicforcemicroscope in non-contact mode with NANOSENSORS™ PointProbe® Plus PPP-NCHR #AFMprobes. https://lnkd.in/dPU9b7f
The full citation and a direct link to the full article can be found in the NANOSENSORS™ blog: https://www.nanosensors.com/…/magnetic-control-of-self…/

MikroMasch 449822087_784208263697315_2934712345549653206_n.jpg

MikroMasch® HQ:NSC35/tipless/No Al AFM cantileversFri Jul 05 2024

Our customers have glued a number of different objects on the MikroMasch HQ:NSC35/tipless/No Al AFM cantilevers, including microspheres and custom AFM tips, but this is the first time we know of when our cantilevers are used to hold the AFM sample. Check out this work on reverse tip sample Atomic Force Microscopy enabled by AFM probe chip nanofabrication!

NanoWorld Stiffness Mediated-Mechanosensations of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels - news

Stiffness Mediated-Mechanosensations of Airway Smooth Muscle Cells on Linear Stiffness Gradient HydrogelsThu Jul 04 2024

Stiffness Mediated-Mechanosensations of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels
Airflow limitation in obstructive airway disease is characterized by narrowing of the airway lumen from excessive contraction of airway smooth muscle (ASM) and remodeling of the airway wall which includes changes in the extracellular matrix (ECM) of the ASM layer.* Previous studies on human airway smooth muscle cells ( hASMC ) have independently assessed the influence of extracellular matrix (ECM) proteins on substrates of supra-physiological stiffnesses, such as tissue culture plastic or glass.* While the influence of discrete substrate stiffness on hASMC behavior has been examined, manipulation of both substrate stiffness and ECM proteins simultaneously (as expected in disease) has […]

NanoWorld Meet NanoWorld® at NanoKorea 2024 - news

Meet NanoWorld® at NanoKorea 2024Wed Jul 03 2024

NanoWorld AG CEO Manfred Detterbeck is attending NANOKOREA 2024, the 22nd International #Nanotech Symposium & Exhibition on nanoscale science and technology , which will be held from July 3-5, 2024 at KINTEX (Korea International Exhibition Center), Goyang-si, Gyeonggi-do, South Korea.  http://www.nanokorea-sympo.or.kr/welcome.php

This year’s main theme is: Invisible Nano Realizes the Future

Will we meet you there too?

NANOSENSORS Teaching an old dog new tricks: Ti-doped ZnFe2O4 as active material in zinc ion batteries – a proof of concept - news

Teaching an old dog new tricks: Ti-doped ZnFe2O4 as active material in zinc ion batteries – a proof of conceptMon Jul 01 2024

#ZnFe2O4 is a well-investigated, versatile material with a spinel structure, which reportedly shows electrical conductivity in the range of 5 to 10 mS cm−1, a relatively small electronic bandgap of about 1.9 eV and values of 2.02 eV and 2.33 eV for the indirect and direct optical band gap. *
Apart from the low production price, the high and globally uniform availability of the constituents, high chemical stability against air or moisture and the harmlessness with regard to health and the environment, these characteristics make it an ideal candidate for photocatalytic or energy harvesting applications. *
In addition, #nanostructured ZnFe2O4 has gained interest because depending on the size of the #nanostructure and the synthesis method, Zn and Fe can partially exchange sites in the crystal structure. The degree of cation exchange allows tuning of the electronic and spin structure of the material making it interesting for various uses ranging from spintronic and microwave applications to sensor materials. *
In the field of #energystorage , ZnFe2O4 has previously been discussed as possible material for the negative electrode in lithium-ion batteries (LIB). Even though its high theoretical capacity of 1072 A h kg−1 as well as its low toxicity compared to conventional Co- and Ni-containing compounds and the low production costs make it highly attractive, further investigations showed that the cycle stability is less than ideal, because the ZnFe2O4 breaks down to ZnO and Fe2O3 during repeated charging and discharging in a cell and metal ion dissolution takes place. *
In addition, the energy efficiency is very low. Still, various studies have been conducted that either condone decomposition since even the decay products still work well as negative electrode or do not charge and discharge over the full voltage window (shallow cycling) to prevent decomposition. *
In the article “Teaching an old dog new tricks: Ti-doped ZnFe2O4 as active material in zinc ion batteries – a proof of concept” Susanna Krämer, Julia Hopster, Anna Windmüller, R.-A. Eichel, M. Grünebaum, T. Jüstel, M. Winter and Kerstin Neuhaus investigate the suitability of the spinel material ZnFe2O4 for use as active material for the cathode side in #zincionbatteries. *
In addition to pure ZnFe2O4, part of the Fe3+ was doped with Ti4+ to achieve stabilization of Zn vacancies in the material and increase ionic conductivity as indicated by previous modelling results. *
For their study Susanna Krämer et al. produced samples with the compositions ZnFe2−xTixO4 (with x = 0 to 0.25) by a Pechini synthesis route. The crystal structure, microstructure, optical and electrochemical characteristics of the material were analyzed and compared to literature results. *
It has been successfully demonstrated that both pure and Ti doped ZnFe2O4 can be used as active material in the positive electrodes of zinc metal batteries or in an ‘‘anode-free’’ setup with Sn metal. *
Cells with calcined ZnFe2xTixO4 (x = 0.09)|0.5 M zinc triflate in acetonitrile|Zn showed a stable cycling behavior over 1000 cycles and an average initial specific capacity of 55 mA h g1.*
In their study the authors found pure #zincferrite and material with low Ti concentrations (specifically x = 0.09) to work as active material in ZIBs. Samples above the solubility limit of Ti (in our case x = 0.13) did not show a stable cycling behavior. Addition of higher amounts of Ti was hence not deemed favorable to improve application of ZnFe2O4 as active material in zinc batteries. *
From studies on the use of ZnFe2O4 and ZnMn2O4 in various electrochemical applications, a variety of synthesis methods are already known for micro-structuring the material in order to increase the surface area and enable more effective use, ideally in combination with an electron conductive coating. This is a future target to considerably improve performance, especially the capacity, of ZnFe2O4-based materials for use in zinc metal and zinc ion batteries. *
#KelvinProbeForceMicroscopy (#KPFM) measurements of ZFO, ZFTO7 and ZFTO13 showed a slight decrease in work function with increasing Ti content (Fig. 5a cited below). In addition, it was observed that for all measured samples, the grain boundaries showed a lower surface potential compared to the grain interiors (Fig. 5b). The difference was evaluated for 25 different grain boundary position in the three samples, but the potential difference for the samples did not depend on the Ti concentration and was roughly in the range of 25 mV, but with a large variation between individual grain boundaries (cf. Fig. S2, ESI†). It can therefore be assumed that this difference is merely due to band bending, which can typically be found at grain boundaries due to the different crystallographic orientation of adjacent grains. *
Kelvin Probe Force Microscopy (KPFM) measurements were performed in an Ar atmosphere using a commercially available atomic force microscopy with conductive NANOSENSORS PointProbe® Plus PPP-NCSTPt #AFMtips. * https://www.nanosensors.com/pointprobe-plus-non-contact…
The samples were used as received without further surface modification and were dried in an Ar stream in the instrument before starting the measurements. KPFM measurements yield data about the local surface potential of a sample, which under ideal conditions is directly related to the Volta potential. If Ti4+ works as an n-type dopant in ZnFe2O414 an increasing work function (which means a decreasing surface potential) with increasing Ti4+ content can be expected.
Before and after the measurements, the AFM tip was calibrated on a freshly cleaved highly ordered pyrolytic graphite reference surface to minimize influence of AFM tip wear on the results. *
Please have a look at the NANOSENSORS blog for the full citation and a direct link to the full article:

ハイライト


Loading
nanosensors-logo
nanoworld-logo
budgetsensors-logo
mikromasch-logo
opus-logo
nanotools-logo