Vesicular transport is a means of communication. *
While cells can communicate with each other via secretion of extracellular vesicles, less is known regarding organelle‐to organelle communication, particularly in the case of
#mitochondria . *
Mitochondria are responsible for the production of energy and for essential metabolic pathways in the cell, as well as fundamental processes such as apoptosis and aging. *
In the article “Mitochondrial‐derived vesicles retain membrane potential and contain a functional ATP synthase” Reut Hazan (Ben‐Menachem), Dvora Lintzer, Tamar Ziv, Koyeli Das, Irit Rosenhek‐Goldian, Ziv Porat, Hila Ben Ami Pilo, Sharon Karniely, Ann Saada, Neta Regev‐Rudzki and Orphry Pines show that functional mitochondria isolated from Saccharomyces cerevisiae release vesicles, independent of the fission machinery. *
They isolate these
#mitochondrialderivedvesicles (MDVs) and find that they are relatively uniform in size, of about 100 nm, and carry selective protein cargo enriched for ATP synthase subunits. *
Imaging analyses of mitochondrial‐derived
#vesicles by
#atomicforcemicroscopy (
#AFM ) and transmission electron microscopy (TEM), verified that these vesicles are within a range of 50 to 200 nm diameter. *
Images were captured with atomic force microscopy using NANOSENSORS uniqprobe qp-BioAC-CI (CB2 or CB1 )
#AFMprobes. The qp-BioAC-CI AFM probes with their rounded AFM tips (typical AFM tip radius 30nm) on three soft
#AFMcantilevers ( typical spring constant CB1: 0.3 N/m , typical spring constant CB2: 0.1 N/m, typical spring constant CB3: 0.06 N/m ) are especially designed for
#cellimaging. *
Please find the full citation and a direct link to the full article in our NANOSENSORS blog